login
A331179
Number of values of k, 1 <= k <= n, with A173557(k) = A173557(n), where A173557(n) = Product_{p-1 | p is prime and divisor of n}.
2
1, 2, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 5, 1, 5, 1, 3, 2, 2, 1, 6, 4, 3, 7, 3, 1, 2, 1, 6, 1, 2, 1, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 9, 4, 6, 1, 5, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 6, 7, 1, 2, 1, 3, 1, 3, 1, 11, 1, 3, 5, 3, 2, 4, 1, 7, 12, 3, 1, 7, 1, 2, 1, 4, 1, 6, 2, 3, 3, 2, 3, 13, 1, 6, 3, 8, 1, 2, 1, 8, 2
OFFSET
1,2
COMMENTS
Ordinal transform of A173557.
LINKS
MATHEMATICA
A173557[n_] := If[n == 1, 1, Times @@ (FactorInteger[n][[All, 1]] - 1)];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A173557[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
v331179 = ordinal_transform(vector(up_to, n, A173557(n)));
A331179(n) = v331179[n];
CROSSREFS
Cf. A173557.
Cf. also A081373, A331175, A331178.
Sequence in context: A324826 A277892 A214743 * A026100 A059127 A319494
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2020
STATUS
approved