%I #10 Dec 02 2020 07:39:51
%S 1,4,1,9,3,1,16,4,1,1,25,8,3,1,1,36,9,4,3,1,1,49,14,5,4,1,1,1,64,16,8,
%T 4,3,1,1,1,81,23,9,5,4,3,1,1,1,100,25,10,8,4,3,1,1,1,1,121,33,15,8,4,
%U 4,3,1,1,1,1,144,36,16,9,5,4,3,3,1,1,1,1,169,46,17,10,8,4,4,3,1,1,1,1,1
%N Triangle read by rows: T(n,k) (n>=k>=1) = round((n/k)*round(n/k)).
%H Robert J. McEliece and Herbert Taylor, <a href="https://doi.org/10.1016/0097-3165(73)90069-1">Covering tori with squares</a>, Journal of Combinatorial Theory, Series A 14.1 (1973): 119-124.
%e Triangle begins:
%e 1,
%e 4, 1,
%e 9, 3, 1,
%e 16, 4, 1, 1,
%e 25, 8, 3, 1, 1,
%e 36, 9, 4, 3, 1, 1,
%e 49, 14, 5, 4, 1, 1, 1,
%e 64, 16, 8, 4, 3, 1, 1, 1,
%e 81, 23, 9, 5, 4, 3, 1, 1, 1,
%e 100, 25, 10, 8, 4, 3, 1, 1, 1, 1,
%e 121, 33, 15, 8, 4, 4, 3, 1, 1, 1, 1,
%e 144, 36, 16, 9, 5, 4, 3, 3, 1, 1, 1, 1,
%e 169, 46, 17, 10, 8, 4, 4, 3, 1, 1, 1, 1, 1,
%e ...
%Y Cf. A331145-A331154.
%K nonn,tabl
%O 1,2
%A _N. J. A. Sloane_, Jan 14 2020