The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331105 T(n,k) = -k*(k+1)/2 mod 2^n; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows. 3
 0, 0, 1, 0, 3, 1, 2, 0, 7, 5, 2, 6, 1, 3, 4, 0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8, 0, 31, 29, 26, 22, 17, 11, 4, 28, 19, 9, 30, 18, 5, 23, 8, 24, 7, 21, 2, 14, 25, 3, 12, 20, 27, 1, 6, 10, 13, 15, 16, 0, 63, 61, 58, 54, 49, 43, 36, 28, 19, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row n is a permutation of {0, 1, ..., A000225(n)}. LINKS Alois P. Heinz, Rows n = 0..15, flattened EXAMPLE Triangle T(n,k) begins:   0;   0,  1;   0,  3,  1,  2;   0,  7,  5,  2, 6, 1,  3, 4;   0, 15, 13, 10, 6, 1, 11, 4, 12, 3, 9, 14, 2, 5, 7, 8;   ... MAPLE T:= n-> (p-> seq(modp(-k*(k+1)/2, p), k=0..p-1))(2^n): seq(T(n), n=0..6); # second Maple program: T:= proc(n, k) option remember;       `if`(k=0, 0, T(n, k-1)-k mod 2^n)     end: seq(seq(T(n, k), k=0..2^n-1), n=0..6); CROSSREFS Columns k=0-2 give: A000004, A000225, A036563 (for n>1). Row sums give A006516. Row lengths give A000079. T(n,n) gives A014833 (for n>0). T(n,2^n-1) gives A131577. Cf. A329278. Sequence in context: A226590 A261349 A227962 * A255615 A056931 A139569 Adjacent sequences:  A331102 A331103 A331104 * A331106 A331107 A331108 KEYWORD nonn,look,tabf AUTHOR Alois P. Heinz, Jan 09 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 00:27 EDT 2020. Contains 336441 sequences. (Running on oeis4.)