login
A331092
Positive numbers k such that k and k + 1 are both positive negaFibonacci-Niven numbers (A331085) and -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).
2
1, 744, 875, 924, 1115, 1575, 1704, 1955, 2904, 3815, 5495, 5844, 6125, 6335, 6824, 7136, 7314, 8154, 8225, 8360, 8784, 9414, 10535, 10744, 10935, 11976, 12047, 13194, 13404, 13475, 18024, 19368, 19943, 20615, 21791, 22224, 22560, 23807, 24143, 24576, 25752, 26424, 26999
OFFSET
1,2
COMMENTS
Positive numbers k such that both k and k + 1 are in A331091.
LINKS
MATHEMATICA
ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
negFibQ[n_] := Divisible[n, negaFibTermsNum[n]] && Divisible[n, negaFibTermsNum[-n]];
nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec + 1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq
CROSSREFS
Intersection of A331086 and A331089.
Sequence in context: A289141 A345547 A345800 * A235294 A331674 A235252
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 08 2020
STATUS
approved