login
A331023
Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n).
9
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 11, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 11, 1, 1, 1, 7, 1, 11, 1, 4, 1, 1, 1, 19, 1, 4, 4, 9, 1, 1, 1, 7, 1
OFFSET
1,4
COMMENTS
A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively.
FORMULA
a(2^n) = A330994(n).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[facs[n]]/Length[Select[facs[n], UnsameQ@@#&]], {n, 100}]//Numerator
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s));
A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1))));
A331023(n) = numerator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021
CROSSREFS
Positions of 1's are A005117.
Positions of 2's appear to be A001248.
The denominators are A331024.
The rounded quotients are A331048.
The same for integer partitions is A330994.
Sequence in context: A222580 A376140 A316978 * A284345 A347463 A373378
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Jan 08 2020
EXTENSIONS
More terms from Antti Karttunen, May 27 2021
STATUS
approved