OFFSET
1,1
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
EXAMPLE
Factorizations of the initial positive terms are:
4 8 16 24 60 96
2*2 2*4 2*8 3*8 2*30 2*48
2*2*2 4*4 4*6 3*20 3*32
2*2*4 2*12 4*15 4*24
2*2*2*2 2*2*6 5*12 6*16
2*3*4 6*10 8*12
2*2*2*3 2*5*6 2*6*8
3*4*5 3*4*8
2*2*15 4*4*6
2*3*10 2*2*24
2*2*3*5 2*3*16
2*4*12
2*2*3*8
2*2*4*6
2*3*4*4
2*2*2*12
2*2*2*2*6
2*2*2*3*4
2*2*2*2*2*3
CROSSREFS
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 07 2021
STATUS
approved