%I #14 Mar 17 2024 07:33:30
%S 1,2,3,4,10000095,41441420,124324220,124324221,124324222,207207020,
%T 233735070,331531220,350602590,409036350,414414020,467470110,
%U 621621020,621621021,621621022,1030302012,1036035020,1051807710,1201800620,1243242020,1243242021,1243242022
%N Starts of runs of 7 consecutive Niven (or Harshad) numbers (A005349).
%C Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.
%D Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
%H Amiram Eldar, <a href="/A330930/b330930.txt">Table of n, a(n) for n = 1..400</a>
%H Curtis Cooper and Robert E. Kennedy, <a href="http://www.fq.math.ca/Scanned/31-2/cooper.pdf">On consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
%H Helen G. Grundman, <a href="https://www.fq.math.ca/Scanned/32-2/grundman.pdf">Sequences of consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Harshad_number">Harshad number</a>.
%H Brad Wilson, <a href="http://www.fq.math.ca/Scanned/35-2/wilson.pdf">Construction of 2n consecutive n-Niven numbers</a>, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
%e 10000095 is a term since 10000095 is divisible by 1 + 0 + 0 + 0 + 0 + 0 + 9 + 5 = 15, 10000096 is divisible by 16, ..., and 10000101 is divisible by 3.
%t nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[7]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 6]], {k, 7, 10^7}]; seq
%Y Cf. A005349, A060159, A141769, A154701, A330927, A330928, A330929.
%K nonn,base
%O 1,2
%A _Amiram Eldar_, Jan 03 2020