OFFSET
1,1
COMMENTS
a(1) = 3528 has power-spectral basis {21^2, 28^2, 48^2}, of index 1. If n > 1, then a(n) has power-spectral basis {M^2*(M+2)^2, (1/4)*M^2*(M+1)^2, (M^2-1)^2}, with index 2, where M=A000668(n+1) is the (n+1)-st Mersenne prime. The first element of the spectral basis of a(n), n > 1, is A330819(n+1), the second element is A133051(n+1), and the third element is A330820(n+1). Generally, a power-spectral basis is a spectral basis that consists of primes and powers.
The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is a(1) + 1 whenever n = 1, and 2*a(n)+1 whenever n > 1. In this case, we say that a(n) has index 1 and index 2, respectively.
LINKS
G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
Wikipedia, Idempotent (ring theory)
Wikipedia, Peirce decomposition
EXAMPLE
a(2) = 2^(2*5-3)*9*31^2 = 2^7*9*31^2 = 1107072 has spectral basis {1023^2, 496^2, 960^2}, consisting of powers. The spectral sum of a(2), that is, the sum of the elements of its spectral basis, is 2*a(2)+1 = 2214145. In this case we say that a(2) has index 2. The number 9 * A330817(2) = 2^(2*5-2)*9*31^2 = 2^8*9*31^2 = 2214144 has the same spectral basis as a(2), but with index 1. We say that 9 * A330817(2) and a(2) are isospectral and form an isospectral pair.
MAPLE
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n+1);
m:=2^p-1;
return 2^(2*p-3)*9*m^2;
end;
MATHEMATICA
f[p_] := 9*2^(2*p - 3)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Feb 07 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jan 25 2020
STATUS
approved