login
A330783
Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
6
1, 1, 3, 8, 27, 94, 385, 1673, 8079, 41614, 231447, 1364697, 8559575, 56544465, 393485452, 2867908008, 21869757215, 173848026202, 1438593095272, 12360614782433, 110119783919367, 1015289796603359, 9674959683612989, 95147388659652754, 964559157655032720, 10067421615492769230
OFFSET
0,3
COMMENTS
The (weakly) normal version is A116540.
LINKS
EXAMPLE
The a(1) = 1 through a(3) = 8 set multipartitions:
{{1}} {{1,2}} {{1,2,3}}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
The a(4) = 27 set multipartitions:
{{1},{1},{1},{1}} {{1},{1},{1,2}} {{1},{1,2,3}} {{1,2,3,4}}
{{1},{1},{1},{2}} {{1},{1},{2,3}} {{1,2},{1,2}}
{{1},{1},{2},{2}} {{1},{2},{1,2}} {{1,2},{1,3}}
{{1},{1},{2},{3}} {{1},{2},{1,3}} {{1},{2,3,4}}
{{1},{2},{3},{4}} {{1},{2},{3,4}} {{1,2},{3,4}}
{{1},{3},{1,2}} {{1,3},{2,4}}
{{1},{3},{2,4}} {{1,4},{2,3}}
{{1},{4},{2,3}} {{2},{1,3,4}}
{{2},{3},{1,4}} {{3},{1,2,4}}
{{2},{4},{1,3}} {{4},{1,2,3}}
{{3},{4},{1,2}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n], And@@UnsameQ@@@#&]], {n, 0, 5}]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)}
seq(n)={my(s=0); forpart(p=n, s+=D(p, n)); s} \\ Andrew Howroyd, Dec 30 2020
CROSSREFS
Allowing edges to be multisets gives is A035310.
The strict case is A318402.
The constant case is A000005.
The (weakly) normal version is A116540.
Unlabeled set multipartitions are A049311.
Set multipartitions of prime indices are A050320.
Set multipartitions of integer partitions are A089259.
Sequence in context: A259811 A148841 A148842 * A148843 A340334 A319787
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 02 2020
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved