%I #9 Dec 30 2019 20:08:59
%S 1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,
%T 2,3,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,
%U 1,2,1,1,1,1,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,3
%N Number of values of k, 1 <= k <= n, with A319626(k) = A319626(n), where A319626(n) gives the numerator of rational valued primorial deflation of n.
%C Ordinal transform of A319626.
%H Antti Karttunen, <a href="/A330751/b330751.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A319626(n) = (n / gcd(n, A064989(n)));
%o v330751 = ordinal_transform(vector(up_to, n, A319626(n)));
%o A330751(n) = v330751[n];
%Y Cf. A064989, A319626, A330750, A330752.
%K nonn
%O 1,6
%A _Antti Karttunen_, Dec 30 2019