login
A330716
n-th Gosper hyperfactorial of n.
3
1, 1, 16, 1952152956156672
OFFSET
0,3
COMMENTS
Gosper's m-th hyperfactorial of n is the product 1^(1^m)*2^(2^m)*3^(3^m)*...*n^(n^m).
The 0th hyperfactorial is the factorial function.
REFERENCES
R. W. Gosper, "Fac Fun" (ca. 1979).
EXAMPLE
n=3: a(3) = 1^(1^3)*2^(2^3)*3^(3^3) = 2^8 * 3^27.
a(4) has 198 decimal digits and a(5) has 2927 digits.
MATHEMATICA
nmax:=3; Table[Product[i^(i^n), {i, 1, n}], {n, 0, nmax}] (* Stefano Spezia, Dec 29 2019 *)
CROSSREFS
Cf. A000142, A002109, A051675, A255321, A255323, A255344 (0th through 5th Gosper hyperfactorials, respectively).
Sequence in context: A291908 A059933 A002488 * A341690 A341689 A243776
KEYWORD
nonn,easy
AUTHOR
Greg Huber, Dec 27 2019
STATUS
approved