login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n. 10
1, 1, 2, 6, 43, 440, 7158, 151414 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.

A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

LINKS

Table of n, a(n) for n=0..7.

EXAMPLE

The a(2) = 2 and a(3) = 6 multisystems:

  {1,1}  {{1},{1,1}}

  {1,2}  {{1},{1,2}}

         {{1},{2,3}}

         {{2},{1,1}}

         {{2},{1,3}}

         {{3},{1,2}}

The a(4) = 43 multisystems (commas and outer brackets elided):

  {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}

  {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}

                 {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}

                 {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}

                 {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}

                                {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}

                                {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}

                                               {{2}}{{3}{11}} {{2}}{{3}{14}}

                                               {{23}}{{1}{1}} {{23}}{{1}{4}}

                                               {{3}}{{1}{12}} {{2}}{{4}{13}}

                                               {{3}}{{2}{11}} {{24}}{{1}{3}}

                                                              {{3}}{{1}{24}}

                                                              {{3}}{{2}{14}}

                                                              {{3}}{{4}{12}}

                                                              {{34}}{{1}{2}}

                                                              {{4}}{{1}{23}}

                                                              {{4}}{{2}{13}}

                                                              {{4}}{{3}{12}}

MATHEMATICA

strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];

Table[Sum[Length[Select[totm[m], Depth[#]==If[Length[m]<=1, 2, Length[m]]&]], {m, strnorm[n]}], {n, 0, 5}]

CROSSREFS

The case with all atoms equal is A000111.

The case with all atoms different is A006472.

The version allowing all depths is A330475.

The unlabeled version is A330663.

The version where the atoms are the prime indices of n is A330665.

The (weakly) normal version is A330676.

The version where the degrees are the prime indices of n is A330728.

Multiset partitions of strongly normal multisets are A035310.

Series-reduced rooted trees with strongly normal leaves are A316652.

Cf. A000311, A000669, A001055, A001678, A005121, A005804, A316651, A318812, A330467, A330474, A330625, A330628, A330664, A330677, A330679.

Sequence in context: A023363 A091241 A198076 * A183313 A066863 A296828

Adjacent sequences:  A330672 A330673 A330674 * A330676 A330677 A330678

KEYWORD

nonn,more

AUTHOR

Gus Wiseman, Dec 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 10:52 EDT 2020. Contains 338027 sequences. (Running on oeis4.)