login
Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.
11

%I #8 Dec 31 2019 06:49:41

%S 1,1,2,12,138,2652,78106,3256404,182463296,13219108288,1202200963522,

%T 134070195402644,17989233145940910,2858771262108762492,

%U 530972857546678902490,113965195745030648131036,27991663753030583516229824,7800669355870672032684666900,2448021231611414334414904013956

%N Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.

%C A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

%H Andrew Howroyd, <a href="/A330655/b330655.txt">Table of n, a(n) for n = 0..200</a>

%e The a(0) = 1 through a(3) = 12 multisystems:

%e {} {1} {1,1} {1,1,1}

%e {1,2} {1,1,2}

%e {1,2,2}

%e {1,2,3}

%e {{1},{1,1}}

%e {{1},{1,2}}

%e {{1},{2,2}}

%e {{1},{2,3}}

%e {{2},{1,1}}

%e {{2},{1,2}}

%e {{2},{1,3}}

%e {{3},{1,2}}

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];

%t Table[Sum[Length[totm[m]],{m,allnorm[n]}],{n,0,5}]

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u}

%o seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ _Andrew Howroyd_, Dec 30 2019

%Y Row sums of A330776.

%Y The unlabeled version is A330474.

%Y The strongly normal case is A330475.

%Y The tree version is A330654.

%Y The maximum-depth case is A330676.

%Y The case where the atoms are all different is A005121.

%Y The case where the atoms are all equal is A318813.

%Y Multiset partitions of normal multisets are A255906.

%Y Series-reduced rooted trees with normal leaves are A316651.

%Y Cf. A000311, A000669, A001678, A213427, A318812, A330675, A330679.

%K nonn

%O 0,3

%A _Gus Wiseman_, Dec 27 2019

%E Terms a(7) and beyond from _Andrew Howroyd_, Dec 30 2019