OFFSET
0,2
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From Colin Barker, Jan 15 2020: (Start)
G.f.: 2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: exp(x)*x*(4 + 18*x + 9*x^2 + x^3). - Stefano Spezia, Feb 03 2020
MAPLE
A330651 := n -> (((n+3)*n+2)*n-2)*n; # M. F. Hasler, Feb 29 2020
MATHEMATICA
Numerator/@Table[(-2 n+2 n^2+3 n^3+n^4)/(1+3 n+6 n^2+4 n^3+n^4), {n, 0, 33}] (* Ed Pegg Jr, Jan 15 2020 *)
PROG
(PARI) Vec(2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5 + O(x^40), -40) \\ Colin Barker, Jan 15 2020
(PARI) apply( {A330651(n)=(((n+3)*n+2)*n-2)*n}, [0..44]) \\ M. F. Hasler, Feb 29 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ed Pegg Jr, Jan 15 2020
STATUS
approved