OFFSET
0,13
COMMENTS
If the decimal expansion of n is d_1 d_2 ... d_k then a(n) is the number formed by concatenating the decimal numbers d_1*d_2, d_2*d_3, ..., d_{k-1}*d_k.
Due to the fact that for two digit numbers the sequence is simply the multiplication of those two numbers, this sequence matches numerous others for the first 100 terms. See the sequences in the cross references. The terms begin to differ beyond n = 100.
LINKS
Scott R. Shannon, Table of n, a(n) for n = 1..10000
FORMULA
MAPLE
read("transforms") :
A330633 := proc(n)
local dgs, L, i ;
if n <=9 then
0;
else
dgs := ListTools[Reverse](convert(n, base, 10)) ;
L := [] ;
for i from 2 to nops(dgs) do
L := [op(L), op(i-1, dgs)*op(i, dgs)] ;
end do:
digcatL(L) ;
end if;
end proc: # R. J. Mathar, Jan 11 2020
MATHEMATICA
Array[If[Or[# == 0, IntegerLength@ # == 1], 0, FromDigits[Join @@ IntegerDigits[Times @@ # & /@ Partition[IntegerDigits@ #, 2, 1]]]] &, 81, 0] (* Michael De Vlieger, Dec 23 2019 *)
PROG
(PARI) a(n) = my(d=digits(n), s="0"); for (k=1, #d-1, s=concat(s, d[k]*d[k+1])); eval(s); \\ Michel Marcus, Apr 28 2020
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Scott R. Shannon, Dec 21 2019
STATUS
approved