|
|
A330627
|
|
Number of non-isomorphic phylogenetic trees with n nodes.
|
|
4
|
|
|
0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets. Each branching as well as each element of each leaf contributes to the number of nodes.
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..500
|
|
FORMULA
|
G.f.: A(x) satisfies A(x) = x*(1/(1-x) - A(x) - 2 + exp(Sum_{k>0} A(x^k)/k)). - Andrew Howroyd, Jan 02 2021
|
|
EXAMPLE
|
Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
1 12 123 1234 12345 123456 1234567 12345678
(1)(2) (1)(23) (1)(234) (1)(2345) (1)(23456)
(12)(34) (12)(345) (12)(3456)
(1)(2)(3) (1)(2)(34) (123)(456)
(1)((2)(3)) (1)(2)(345)
(1)(23)(45)
(1)((2)(34))
(1)(2)(3)(4)
(12)((3)(4))
|
|
PROG
|
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021
|
|
CROSSREFS
|
Phylogenetic trees by number of labels are A005804, with unlabeled version A141268.
Balanced phylogenetic trees are A320154.
Cf. A000311, A000669, A001678, A004114, A005121, A007716, A048816, A060356, A330465, A330467, A330469.
Sequence in context: A007147 A230380 A127968 * A188541 A037026 A116651
Adjacent sequences: A330624 A330625 A330626 * A330628 A330629 A330630
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Dec 28 2019
|
|
EXTENSIONS
|
Terms a(11) and beyond from Andrew Howroyd, Jan 02 2021
|
|
STATUS
|
approved
|
|
|
|