login
A330605
a(n) = exp(-1) * Sum_{k>=0} (n*k - 1)^n / k!.
5
1, 0, 5, 89, 2737, 121399, 7316101, 572218716, 56142822849, 6731180810945, 965898950508901, 163116461798211503, 31969444766902475185, 7187057932197297484108, 1834860441330563739401765, 527403671798720265634312349, 169396494914472404237224898305
OFFSET
0,3
FORMULA
a(n) = n! * [x^n] exp(exp(n*x) - x - 1).
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * n^k * Bell(k).
MATHEMATICA
Table[Exp[-1] Sum[(n k - 1)^n/k!, {k, 0, Infinity}], {n, 0, 16}]
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] n^k BellB[k], {k, 0, n}], {n, 1, 16}]]
Table[n! SeriesCoefficient[Exp[Exp[n x] - x - 1], {x, 0, n}], {n, 0, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 19 2019
STATUS
approved