login
A330441
Semiprimes p*q such that the concatenations of p and q in both orders are prime.
1
21, 33, 51, 93, 111, 133, 177, 201, 219, 247, 253, 327, 411, 427, 573, 589, 679, 687, 763, 793, 813, 889, 993, 1077, 1081, 1119, 1243, 1339, 1347, 1401, 1411, 1497, 1501, 1603, 1623, 1651, 1671, 1821, 1839, 1843, 1851, 1981, 2019, 2047, 2059, 2103, 2157, 2199, 2217, 2469, 2479, 2629, 2761, 2787
OFFSET
1,1
LINKS
EXAMPLE
a(3)=51 is a member because 51=3*17 and both 317 and 173 are primes.
MAPLE
N:= 20000: # for all terms <= N
catt:= proc(n, m) 10^(1+ilog10(m))*n+m end proc:
Primes:= select(isprime, [seq(i, i=3..N/3)]):
SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p, N/p))), p=Primes)]:
B:=select(t -> isprime(catt(t[1], t[2])) and isprime(catt(t[2], t[1])), SP):
sort(map(convert, B, `*`));
CROSSREFS
Cf. A006881.
Sequence in context: A141249 A026068 A217263 * A176945 A333857 A070006
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Dec 14 2019
STATUS
approved