login
A330394
Irregular triangle T(n,k) read by rows in which n-th row lists in increasing order all integers m such that Omega(m) = n and each prime factor p of m has index pi(p) <= n.
3
1, 2, 4, 6, 9, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 16, 24, 36, 40, 54, 56, 60, 81, 84, 90, 100, 126, 135, 140, 150, 189, 196, 210, 225, 250, 294, 315, 350, 375, 441, 490, 525, 625, 686, 735, 875, 1029, 1225, 1715, 2401, 32, 48, 72, 80, 108, 112, 120, 162
OFFSET
0,2
COMMENTS
Positive integers not in T are: 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, ... .
Row n has exactly one squarefree member: primorial(n) = A002110(n).
Sorting all terms (except 1) gives A324521.
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
2;
4, 6, 9;
8, 12, 18, 20, 27, 30, 45, 50, 75, 125;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1], [seq(
map(x-> x*ithprime(j), b(n-1, j))[], j=1..i)])
end:
T:= n-> sort(b(n$2))[]:
seq(T(n), n=0..5); # Alois P. Heinz, Mar 03 2020
MATHEMATICA
t = Table[Union[Apply[Times, Tuples[Prime[Range[n]], {n}], {1}]], {n, 0, 5}];
t // TableForm
Flatten[t]
CROSSREFS
Column k=1 gives A000079.
Last elements of rows give A307539.
Row lengths give A088218.
Row sums give A332967(n) = A124960(2n,n).
T(n,n) gives A101695(n) for n > 0.
Sequence in context: A248761 A176461 A255249 * A084407 A114526 A333387
KEYWORD
nonn,tabf
AUTHOR
Robert Price, Mar 03 2020
STATUS
approved