login
A330385
Add the odd terms and subtract the even ones, the result must always be a square. This is the lexicographically earliest sequence of distinct positive integers with this property.
3
1, 3, 4, 9, 7, 12, 5, 8, 15, 16, 25, 11, 13, 24, 39, 17, 19, 21, 23, 44, 36, 28, 20, 33, 40, 27, 32, 45, 48, 35, 85, 72, 51, 64, 133, 87, 60, 29, 31, 105, 123, 84, 41, 43, 141, 96, 47, 49, 159, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 164, 156
OFFSET
1,2
COMMENTS
This sequence is a variant of A329544.
All terms belong to A042965.
EXAMPLE
The first terms, alongside the corresponding running totals, are:
n a(n) t(n)
-- ---- --------
1 1 1 = 1^2
2 3 4 = 2^2
3 4 0 = 0^2
4 9 9 = 3^2
5 7 16 = 4^2
6 12 4 = 2^2
7 5 9 = 3^2
8 8 1 = 1^2
9 15 16 = 4^2
10 16 0 = 0^2
11 25 25 = 5^2
PROG
(PARI) s=t=0; for (n=1, 65, for (v=1, oo, if (!bittest(s, v) && issquare(u=t-v*(-1)^v), print1 (v", "); s+=2^v; t=u; break)))
CROSSREFS
Cf. A000290, A042965, A329544, A330386 (running totals).
Sequence in context: A356541 A062319 A285265 * A178590 A022463 A239384
KEYWORD
nonn,look
AUTHOR
Rémy Sigrist, Dec 12 2019
STATUS
approved