login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330353 Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)). 8
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..420

FORMULA

E.g.f.: -Sum_{k>=1} log(1 - (exp(x) - 1)^k).

E.g.f.: A(x) = log(B(x)), where B(x) = e.g.f. of A167137.

G.f.: Sum_{k>=1} (k - 1)! * sigma(k) * x^k / Product_{j=1..k} (1 - j*x), where sigma = A000203.

exp(Sum_{n>=1} a(n) * log(1 + x)^n / n!) = g.f. of the partition numbers (A000041).

a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * sigma(k).

a(n) ~ n! * Pi^2 / (12 * (log(2))^(n+1)). - Vaclav Kotesovec, Dec 14 2019

MATHEMATICA

nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]

CROSSREFS

Cf. A000041, A000203, A000629, A002745, A008277, A038048, A167137, A308555, A330351, A330352, A330354.

Sequence in context: A144085 A003708 A327679 * A000986 A143920 A233534

Adjacent sequences:  A330350 A330351 A330352 * A330354 A330355 A330356

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 11 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 29 18:30 EDT 2020. Contains 338067 sequences. (Running on oeis4.)