OFFSET
1,1
COMMENTS
Row n has 2*n entries.
REFERENCES
Garvan, Frank G. "A simple proof of Watson's partition congruences for powers of 7." Journal of the Australian Mathematical Society 36.3 (1984): 316-334.
LINKS
Freddy Barrera, Rows n = 1..50, flattened
Garvan, Frank G., A simple proof of Watson's partition congruences for powers of 7, Journal of the Australian Mathematical Society 36.3 (1984): 316-334. [Annotated enlargement of Eq. (1.9) on page 318]
Freddy Barrera, Sage code for A330329
EXAMPLE
The initial rows are:
[7,7^2],
[10, 9*7^2, 2*7^4, 7^5],
[3, 114*7, 85*7^3, 24*7^5, 3*7^7, 7^8],
[0, 82*7, 176*7^3, 845*7^4, 272*7^6, 46*7^8, 4*7^10, 7^11],
[0, 190, 1265*7^2, 1895*7^4, 1233*7^6, 3025*7^7, 620*7^9, 75*7^11, 5*7^13, 7^14],
...
that is,
[7, 49],
[10, 441, 4802, 16807],
[3, 798, 29155, 403368, 2470629, 5764801],
[0, 574, 60368, 2028845, 32000528, 265180846, 1129900996, 1977326743],
[0, 190, 61985, 4549895, 145061217, 2491217575, 25019236340, 148299505725, 484445052035, 678223072849],
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 13 2019
STATUS
approved