OFFSET
0,2
FORMULA
E.g.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = e.g.f. of A000522.
E.g.f.: exp(Sum_{k>=1} (sigma(k) / k + 1) * x^k), where sigma = A000203.
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(phi(k)/k + 1), where phi = A000010.
a(0) = 1; a(n) = (n - 1)! * Sum_{k=1..n} (sigma(k) + k) * a(n-k) / (n - k)!.
a(n) ~ sqrt(1/Pi + Pi/6) * n^(n - 1/2) / (2 * exp(n + 1/2 - sqrt(2*(6 + Pi^2)*n/3))). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 19; CoefficientList[Series[Product[Exp[x^k]/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (n - 1)! Sum[(DivisorSigma[1, k] + k) a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 19}]
Table[n!*Sum[LaguerreL[k, -1, -1]*PartitionsP[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 09 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 05 2019
STATUS
approved