login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330171 a(n) = n + floor(ns/r) + floor(nt/r), where r = sqrt(2) - 1, s = sqrt(2), t = sqrt(2) + 1. 2
9, 19, 30, 40, 51, 60, 70, 81, 91, 102, 112, 121, 132, 142, 153, 163, 174, 183, 193, 204, 214, 225, 235, 244, 255, 265, 276, 286, 297, 306, 316, 327, 337, 348, 357, 367, 378, 388, 399, 409, 418, 429, 439, 450, 460, 471, 480, 490, 501, 511, 522, 532, 541, 552 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n)=n+[ns/r]+[nt/r],
b(n)=n+[nr/s]+[nt/s],
c(n)=n+[nr/t]+[ns/t], where []=floor.
Taking r = sqrt(2) - 1, s = sqrt(2), t = sqrt(2) + 1 yields
LINKS
FORMULA
a(n) = n + floor(ns/r) + floor(nt/r), where r = sqrt(2) - 1, s = sqrt(2), t = sqrt(2) + 1.
MATHEMATICA
r = Sqrt[2] - 1; s = Sqrt[2]; t = Sqrt[2] + 1;
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t]
Table[a[n], {n, 1, 120}] (* A330171 *)
Table[b[n], {n, 1, 120}] (* A016789 *)
Table[c[n], {n, 1, 120}] (* A330172 *)
CROSSREFS
Sequence in context: A031499 A017377 A363060 * A189798 A056126 A190513
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 04 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:17 EDT 2024. Contains 371962 sequences. (Running on oeis4.)