%I #12 Dec 20 2023 08:01:26
%S 1,0,2,7,47,368,3494,38673,489341,6966344,110199090,1917589771,
%T 36402276107,748629861016,16580304397942,393443385034069,
%U 9958671117295737,267824225078212336,7626444798009902530,229232204568273395919,7252798333599466521575,240948882537990850397536
%N Expansion of e.g.f. exp(-x) / (1 + log(1 - x)).
%C Inverse binomial transform of A007840.
%F a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * A007840(k).
%F a(n) ~ n! * exp(n + exp(-1) - 1) / (exp(1) - 1)^(n+1). - _Vaclav Kotesovec_, Dec 15 2019
%F a(n) = (-1)^n + Sum_{k=1..n} (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Dec 19 2023
%t nmax = 21; CoefficientList[Series[Exp[-x]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A052841, A330150.
%Y Cf. A007840, A291979.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Dec 03 2019