OFFSET
1,1
COMMENTS
Let M be an N-digit positive integer with digits (base 10) d_1, d_2, d_3, ..., d_N. If Sum_{i = 1..N} (d_i)^N is prime, then M is part of this sequence.
Numbers k such that A101337(k) is prime.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Math Misery, Of Probes and Primes
EXAMPLE
The first four terms are the single-digit primes; a(5) = 11 since 1^2 + 1^2 = 2, which is prime.
MAPLE
filter:= proc(n) local L, d, t;
L:= convert(n, base, 10);
d:= nops(L);
isprime(add(t^d, t=L))
end proc:
select(filter, [$1..1000]); # Robert Israel, Oct 17 2023
MATHEMATICA
Select[Range[250], (d = IntegerDigits[#]; PrimeQ@ Total[d^Length[d]]) &] (* Giovanni Resta, Dec 02 2019 *)
PROG
(PARI) isok(n) = {my(d = digits(n)); isprime(sum(k=1, #d, d[k]^#d)); } \\ Michel Marcus, Dec 05 2019
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Manan Shah, Dec 01 2019
EXTENSIONS
More terms from Giovanni Resta, Dec 02 2019
STATUS
approved