OFFSET
1,2
COMMENTS
A multiset partition is a finite multiset of finite nonempty multisets of positive integers.
We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of all brute-force normalized multiset partitions together with their MM-numbers begins:
1: 0 63: {1}{1}{11} 159: {1}{1111}
3: {1} 69: {1}{22} 161: {11}{22}
7: {11} 81: {1}{1}{1}{1} 165: {1}{2}{3}
9: {1}{1} 89: {1112} 169: {12}{12}
13: {12} 91: {11}{12} 171: {1}{1}{111}
15: {1}{2} 105: {1}{2}{11} 183: {1}{122}
19: {111} 111: {1}{112} 189: {1}{1}{1}{11}
21: {1}{11} 113: {123} 195: {1}{2}{12}
27: {1}{1}{1} 117: {1}{1}{12} 207: {1}{1}{22}
37: {112} 131: {11111} 223: {11112}
39: {1}{12} 133: {11}{111} 225: {1}{1}{2}{2}
45: {1}{1}{2} 135: {1}{1}{1}{2} 243: {1}{1}{1}{1}{1}
49: {11}{11} 141: {1}{23} 247: {12}{111}
53: {1111} 147: {1}{11}{11} 259: {11}{112}
57: {1}{111} 151: {1122} 267: {1}{1112}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]], brute[m/.Rule@@@Table[{(Union@@m)[[i]], i}, {i, Length[Union@@m]}]], First[Sort[brute[m, 1]]]];
brute[m_, 1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}];
Select[Range[1, 100, 2], Sort[primeMS/@primeMS[#]]==brute[primeMS/@primeMS[#]]&]
CROSSREFS
Equals the odd terms of A330104.
Non-isomorphic multiset partitions are A007716.
Cf. A000612, A055621, A283877, A300300, A316983, A317533, A320664, A330061, A330098, A330101, A330103, A330105.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- BII: A330109 (set-systems).
KEYWORD
nonn,eigen
AUTHOR
Gus Wiseman, Dec 02 2019
STATUS
approved