login
A330075
Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k) / k).
0
1, 1, 2, 7, 32, 168, 1184, 8622, 77216, 747576, 8185392, 93054960, 1264465872, 16974221184, 254355732864, 4069961945280, 70258008510720, 1228263760984320, 24025502406873600, 470522155226595840, 10095034628228958720, 222277023267825254400, 5144511652272759029760
OFFSET
0,3
FORMULA
E.g.f.: Product_{j>=1} (1 + Sum_{i>=1} x^(i*j) / (i*j)).
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[1 - Log[1 - x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Product[(1 + Sum[x^(i j)/(i j), {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 30 2019
STATUS
approved