%I #8 Jun 23 2023 18:28:45
%S 1,0,1,3,11,55,322,2114,15556,127005,1135374,11011220,115080825,
%T 1288589757,15379512670,194796087841,2608470709562,36805935282625,
%U 545626818921885,8475730766054047,137637670315066835,2331584745107027528,41122505417366272200
%N Expansion of e.g.f. exp(cosh(exp(x) - 1) - 1).
%C Stirling transform of A005046 (with interpolated zeros).
%C Exponential transform of A024430.
%H Alois P. Heinz, <a href="/A330041/b330041.txt">Table of n, a(n) for n = 0..485</a>
%F a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A024430(k) * a(n-k).
%p g:= proc(n) option remember; `if`(n=0, 1, add(
%p binomial(2*n-1, 2*k-1) *g(n-k), k=1..n))
%p end:
%p b:= proc(n, m) option remember; `if`(n=0,
%p `if`(m::odd, 0, g(m/2)), m*b(n-1, m)+b(n-1, m+1))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..22); # _Alois P. Heinz_, Jun 23 2023
%t nmax = 22; CoefficientList[Series[Exp[Cosh[Exp[x] - 1] - 1], {x, 0, nmax}], x] Range[0, nmax]!
%Y Cf. A000258, A005046, A024430, A185369, A330021.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Nov 28 2019