login
A330025
a(n) = (-1)^floor(n/5) * sign(mod(n, 5)).
1
0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1
OFFSET
0,1
COMMENTS
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = 1, z = 1. - Michael Somos, Mar 17 2020
FORMULA
Euler transform of length 10 sequence [1, 0, 0, -1, -1, 0, 0, 0, 0, 1].
G.f.: x * (1 + x) * (1 + x^2) / (1 + x^5).
a(n) = A099443(n-1). a(n) = A163812(n) except n=0.
a(n) = (-1)^floor(n/5) * A011558(n) for all n in Z.
0 = a(n)*a(n+4) - a(n+1)*a(n+3) + a(n+2)^2) = a(n)*a(n+5) - a(n+1)*a(n+4) + a(n+2)*a(n+3) for all n in Z. - Michael Somos, Mar 17 2020
EXAMPLE
G.f. = x + x^2 + x^3 + x^4 - x^6 - x^7 - x^8 - x^9 + x^11 + x^12 + ...
MATHEMATICA
a[ n_] := (-1)^Quotient[n, 5] Sign@Mod[n, 5];
PROG
(PARI) {a(n) = (-1)^(n\5) * sign(n%5)};
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Nov 27 2019
STATUS
approved