login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329898 a(n) is the position of 2*A025487(n) in A025487. 9
2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers k for which A007814(A025487(k)) > A007949(A025487(k)), i.e., numbers k for which the 2-adic valuation of A025487(k) is larger than its 3-adic valuation.

Numbers k for which A181815(k) is even.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000

FORMULA

For all n >= 1, A329904(a(n)) = n.

MATHEMATICA

(* First, load the function f at A025487, then: *)

With[{s = Union@ Flatten@ f@ 6}, Map[If[2 # > Max@ s, Nothing, FirstPosition[s, 2 #][[1]] ] &, s]] (* Michael De Vlieger, Jan 11 2020 *)

PROG

(PARI)

upto_e = 64; \\ 64 -> 43608 terms.

A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980

A329898list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista, 2*lista[i]); t =

A283980(lista[i]); if(t <= u, listput(lista, t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1, oo, if(!(t=vecsearch(v025487, 2*(v025487[i]))), return(Vec(lista)), listput(lista, t))); };

v329898 = A329898list(upto_e);

A329898(n) = v329898[n];

CROSSREFS

Cf. A329897 (complement), A330683 (and its permutation).

Cf. A007814, A007949, A025487, A329904 (a left inverse), A329906.

Positions of even terms in A181815, zeros in A330682.

Sequence in context: A059870 A179813 A191914 * A145353 A013936 A229992

Adjacent sequences:  A329895 A329896 A329897 * A329899 A329900 A329901

KEYWORD

nonn

AUTHOR

Antti Karttunen, Dec 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 03:32 EST 2021. Contains 340360 sequences. (Running on oeis4.)