login
Lexicographically earliest infinite sequence such that a(i) = a(j) => A219175(i) = A219175(j) and A289625(i) = A289625(j) for all i, j.
2

%I #6 Dec 07 2019 17:23:28

%S 1,1,2,3,4,3,5,6,7,8,9,6,10,11,12,13,14,15,16,13,17,18,19,20,21,22,23,

%T 24,25,26,27,28,29,30,31,32,33,34,35,36,37,32,38,39,40,41,42,36,43,44,

%U 45,46,47,48,49,50,51,52,53,36,54,55,56,57,58,59,60,61,62,63,64,65,66,67,49,68,69,70,71,72,73,74,75,65,76,77,78,79,80,70,81,82,83

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A219175(i) = A219175(j) and A289625(i) = A289625(j) for all i, j.

%C Restricted growth sequence transform of the ordered pair [A219175(n), A289625(n)].

%C For all i, j:

%C a(i) = a(j) => A327979(i) = A327979(j).

%H Antti Karttunen, <a href="/A329895/b329895.txt">Table of n, a(n) for n = 1..65537</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A219175(n) = (n%lcm(znstar(n)[2]));

%o A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };

%o Aux329895(n) = [A219175(n),A289625(n)];

%o v329895 = rgs_transform(vector(up_to, n, Aux329895(n)));

%o A329895(n) = v329895[n];

%Y Cf. A002322, A219175, A289625, A327979, A329896.

%K nonn

%O 1,3

%A _Antti Karttunen_, Dec 07 2019