OFFSET
0,6
COMMENTS
Also the coefficient of (x/y)^k in the expansion of (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.
T(n,k) is the number of n step walks a chess king can take from (0,0) to (k,k). For example, for n=3 starting from (0,0) there is 1 walk to (3,3), 6 walks to (2,2), 27 walks to (1,1), 24 walks to (0,0), 27 walks to (-1,-1), 6 walks to (-2,-2) and 1 walk to (-3,-3). - Martin Clever, May 27 2023
LINKS
Seiichi Manyama, Rows n = 0..50, flattened
FORMULA
T(n,k) = T(n,-k).
EXAMPLE
-1 + (1 + x + 1/x)*(1 + y + 1/y) = x*y + 1/(x*y) + x/y + y/x + x + 1/x + y + 1/y. So T(1,-1) = 1, T(1,0) = 0, T(1,1) = 1.
Triangle begins:
1;
1, 0, 1;
1, 2, 8, 2, 1;
1, 6, 27, 24, 27, 6, 1;
1, 12, 70, 132, 216, 132, 70, 12, 1;
1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1;
PROG
(PARI) {T(n, k) = polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y))^n, k), k)}
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Seiichi Manyama, Nov 21 2019
STATUS
approved