login
A329809
Numbers k such that floor(k/10)^(k mod 10) contains the digit (k mod 10).
0
11, 26, 37, 39, 46, 52, 55, 56, 57, 59, 66, 67, 69, 73, 74, 76, 78, 84, 86, 87, 95, 97, 99, 101, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 128, 129, 131, 136, 137, 138, 139, 141, 144, 145, 146, 148, 151, 152, 153, 155, 156, 157, 158, 159, 161, 162, 165, 166, 169, 171, 172, 173, 175
OFFSET
1,1
COMMENTS
Or: Numbers k such that A059995(k)^A010879(k) contains the last digit of k, A010879(k).
It's easy to see that all numbers ending in {11, 37, 46, 52, 55, 59, 66, 69, 73, 97, 99} are in the sequence: for these, A059995(k)^A010879(k) mod 100 = (1, 87, 96, 25, 25, 25, 56, 96, 43, 69, 89).
LINKS
M. F. Hasler, in reply to Éric Angelini, 2019 must be read here as 201^9, SeqFan list, Nov. 21, 2019.
PROG
(PARI) select( t->setsearch(Set(digits((t\10)^(t%10))), t%10), [0..9999])
CROSSREFS
Cf. A059995 (floor(n/10): drop final digit), A010879 (n mod 10; final digit of n).
Sequence in context: A251268 A174223 A247466 * A190684 A354383 A002154
KEYWORD
nonn,base
AUTHOR
Eric Angelini and M. F. Hasler, Nov 21 2019
STATUS
approved