Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #32 Apr 08 2024 21:53:37
%S 1,1,2,3,4,7,10,15,22,34,51,76,114,171,257,385,575,862,1295,1941,2916,
%T 4374,6558,9840,14766,22151,33236,49864,74775,112144,168198,252313,
%U 378489,567747,851649,1277446,1916182,2874172,4311325,6466984,9700248,14550387,21825590
%N Number of n-th generation nodes of a rooted binary tree whose m-th node has exactly A000002(m) descendants, where A000002 is the Kolakoski sequence.
%H A.H.M. Smeets, <a href="/A329758/b329758.txt">Table of n, a(n) for n = 1..62</a>
%F a(n) = A054353(a(1) + ... + a(n-1)) - A054353(a(1) + ... + a(n-2)) for n > 2.
%F a(n) = A054352(n-1) - A054352(n-2). - _A.H.M. Smeets_, Apr 08 2024
%o (Python)
%o def A329758():
%o x = 1
%o g = A000002()
%o while True:
%o yield x
%o acc = 0
%o for i in range(0, x):
%o acc = acc + next(g)
%o x = acc # _Jack W Grahl_, May 04 2020
%Y Cf. A000002, A054352, A054353.
%K nonn
%O 1,3
%A _Jakub Zaborowski_, Nov 20 2019
%E More terms from _Jack W Grahl_, May 04 2020