login
A329718
The number of open tours by a biased rook on a specific f(n) X 1 board, where f(n) = A070941(n) and cells are colored white or black according to the binary representation of 2n.
4
1, 2, 4, 4, 8, 6, 14, 8, 16, 10, 24, 10, 46, 24, 46, 16, 32, 18, 44, 14, 84, 34, 68, 18, 146, 68, 138, 44, 230, 84, 146, 32, 64, 34, 84, 22, 160, 54, 112, 22, 276, 106, 224, 54, 376, 106, 192, 34, 454, 192, 406, 112, 690, 224, 406, 84, 1066, 376, 690, 160
OFFSET
0,2
COMMENTS
A cell is colored white if the binary digit is 0 and a cell is colored black if the binary digit is 1. A biased rook on a white cell moves only to the left and otherwise moves only to the right.
LINKS
Mikhail Kurkov, Comments on A329718 [verification needed]
FORMULA
a(n) = f(n) + f(A059894(n)) = f(n) + f(2*A053645(n)) for n > 0 with a(0) = 1 where f(n) = A329369(n).
Sum_{k=0..2^n-1} a(k) = 2*(n+1)! - 1 for n >= 0.
a((4^n-1)/3) = 2*A110501(n+1) for n > 0.
a(2^1*(2^n-1)) = A027649(n),
a(2^2*(2^n-1)) = A027650(n),
a(2^3*(2^n-1)) = A027651(n),
a(2^4*(2^n-1)) = A283811(n),
and more generally, a(2^m*(2^n-1)) = T(n,m+1) for n >= 0, m >= 0 where T(n,m) = Sum_{k=0..n} k!*(k+1)^m*Stirling2(n,k)*(-1)^(n-k).
EXAMPLE
a(1) = 2 because the binary expansion of 2 is 10 and there are 2 open biased rook's tours, namely 12 and 21.
a(2) = 4 because the binary expansion of 4 is 100 and there are 4 open biased rook's tours, namely 132, 213, 231 and 321.
a(3) = 4 because the binary expansion of 6 is 110 and there are 4 open biased rook's tours, namely 123, 132, 231 and 312.
KEYWORD
nonn
AUTHOR
Mikhail Kurkov, Nov 19 2019 [verification needed]
STATUS
approved