

A329696


Number of excursions of length n with Motzkinsteps avoiding the consecutive steps UH, HU, HD and DH.


0



1, 1, 2, 1, 3, 1, 6, 1, 15, 1, 43, 1, 133, 1, 430, 1, 1431, 1, 4863, 1, 16797, 1, 58787, 1, 208013, 1, 742901, 1, 2674441, 1, 9694846, 1, 35357671, 1, 129644791, 1, 477638701, 1, 1767263191, 1, 6564120421, 1, 24466267021, 1, 91482563641, 1, 343059613651, 1, 1289904147325, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The Motzkin step set is U=(1,1), H=(1,0) and D=(1,1). An excursion is a path starting at (0,0), ending at (n,0) and never crossing the xaxis, i.e., staying at nonnegative altitude.


LINKS

Table of n, a(n) for n=0..49.
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, preprint, 2019.


FORMULA

G.f.: (1t+2t^3(1t)*sqrt(14*t^2))/(2t^2(1t)).
a(n)=1 for n odd, a(n)=C(n)+1 for n>0 even, where C(n) is the nth Catalan number A000108, and a(0)=1.
Dfinite with recurrence: +(n+2)*a(n) +2*(n1)*a(n1) +(3*n+4)*a(n2) +8*(n2)*a(n3) +4*(n+3)*a(n4)=0.  R. J. Mathar, Jan 09 2020


EXAMPLE

a(4)=3 since we have 3 excursions of length 4, namely UUDD, UDUD and HHHH. More generally, for n=2k > 0 even we have all Dyck paths of semilength k and a path consisting only of horizontal steps H^n. For n odd, we only have the path H^n.


CROSSREFS

Cf. A000108.
Sequence in context: A119606 A034850 A220377 * A145969 A357985 A140352
Adjacent sequences: A329693 A329694 A329695 * A329697 A329698 A329699


KEYWORD

nonn,walk


AUTHOR

Valerie Roitner, Dec 12 2019


STATUS

approved



