|
|
A329667
|
|
Number of meanders of length n with Motzkin-steps avoiding the consecutive steps UU and HH.
|
|
2
|
|
|
1, 2, 3, 6, 11, 21, 42, 83, 167, 341, 697, 1437, 2983, 6211, 12996, 27304, 57528, 121601, 257759, 547652, 1166299, 2489010, 5321780, 11398972, 24456235, 52549847, 113077188, 243645011, 525630690, 1135309380, 2454863253, 5313639848, 11512892983, 24967852309
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The Motzkin step set is U=(1,1), H=(1,0) and D=(1,-1). A meander is a path starting at (0,0) and never crossing the x-axis, i.e. staying at nonnegative altitude.
|
|
LINKS
|
Table of n, a(n) for n=0..33.
|
|
FORMULA
|
G.f.: (1/2)*(1-t^3-3*t^2-sqrt(t^6+2*t^5-3*t^4-6*t^3-2*t^2+1))*(t+1)/((t^2+2*t-1)*t^2).
|
|
EXAMPLE
|
a(3)=6 since we have 6 meanders of length 3, namely UHU, UDU, UHD, UDH, HUH and HUD.
|
|
PROG
|
(PARI) my(t='t+O('t^40)); Vec((1/2)*(1-t^3-3*t^2-sqrt(t^6+2*t^5-3*t^4-6*t^3-2*t^2+1))*(t+1)/((t^2+2*t-1)*t^2)) \\ Michel Marcus, Nov 25 2019
|
|
CROSSREFS
|
Cf. A329666 (excursions with same forbidden consecutive steps).
Sequence in context: A008930 A339151 A164362 * A026742 A316471 A018268
Adjacent sequences: A329664 A329665 A329666 * A329668 A329669 A329670
|
|
KEYWORD
|
nonn,walk
|
|
AUTHOR
|
Valerie Roitner, Nov 25 2019
|
|
STATUS
|
approved
|
|
|
|