The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329644 Möbius transform of A323244, the deficiency of A156552(n). 12
 0, 1, 1, 1, 1, 2, 1, 4, -1, 3, 1, 5, 1, 14, 0, 0, 1, 9, 1, 12, -5, 16, 1, 8, -5, 44, 4, 5, 1, 2, 1, 24, 12, 80, -4, -4, 1, 254, -14, 0, 1, 22, 1, 47, 7, 224, 1, 24, -13, 19, 6, 83, 1, 12, -21, 44, -14, 746, 1, 14, 1, 1360, 20, -8, 8, 9, 1, 131, 252, 24, 1, 12, 1, 3836, 13, 149, -12, 71, 1, 56, -16, 5456, 1, -21, -74, 12248, -350, -40, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS The first eleven zeros occur at n = 1, 15, 16, 40, 96, 119, 120, 160, 893, 2464, 6731. There are 3091 negative terms among the first 10000 terms. Applying this function to the divisors of the first four terms of A324201 reveals the following pattern: ------------------------------------------------------------------------------------ A324201(n) divisors                             a(n) applied       Sum of positive                                                  to each:          terms, A329610         9: [1, 3, 9]                         -> [0, 1, -1]                     1       125: [1, 5, 25, 125]                   -> [0, 1, -5, 4]                  5    161051: [1, 11, 121, 1331, 14641, 161051] -> [0, 1, -29, 4, -240, 264]    269 410338673: [1, 17, 289, 4913, 83521, 1419857, 24137569, 410338673]                              -> [0, 1, -125, 4, -1008, 1032, -5048, 5144]   6181 The positive and negative terms seem to alternate, and the fourth term (from case n=125 onward) is always 4. See also array A329637. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552) FORMULA a(n) = Sum_{d|n} A008683(n/d) * A323244(d). a(n) = Sum_{d|n} A008683(n/d) * (2*A156552(d) - A323243(d)). a(1) = 0; for n > 1, a(n) = 2*A297112(n) - A324543(n) = 2^A297113(n) - A324543(n). a(n) = A329642(n) - A329643(n). For all n >= 1, a(A000040(n)^2) = A323244(A000040(n)^2)-1 = -A036563(n). For all primes p, a(p^3) = A323244(p^3) - A323244(p^2) = 4. PROG (PARI) A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k)); A329644(n) = sumdiv(n, d, moebius(n/d)*A323244(d)); CROSSREFS Cf. A000203, A008683, A036563, A156552, A297112, A297113, A323243, A323244, A324543, A329610, A329637, A329638, A329639, A329645, A329646. Sequence in context: A181157 A095248 A122458 * A256578 A127461 A329900 Adjacent sequences:  A329641 A329642 A329643 * A329645 A329646 A329647 KEYWORD sign AUTHOR Antti Karttunen, Nov 21 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 09:52 EDT 2021. Contains 343110 sequences. (Running on oeis4.)