login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Smallest MM-number of a connected set of n multisets.
3

%I #12 Nov 18 2019 08:48:10

%S 1,2,21,195,1365,25935,435435

%N Smallest MM-number of a connected set of n multisets.

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

%e The sequence of terms together with their corresponding systems begins:

%e 1: {}

%e 2: {{}}

%e 21: {{1},{1,1}}

%e 195: {{1},{2},{1,2}}

%e 1365: {{1},{2},{1,1},{1,2}}

%e 25935: {{1},{2},{1,1},{1,2},{1,1,1}}

%e 435435: {{1},{2},{1,1},{3},{1,2},{1,3}}

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];

%t dae=Select[Range[100000],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&];

%t Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

%Y MM-numbers of connected sets of sets are A328514.

%Y The weight of the system with MM-number n is A302242(n).

%Y Connected numbers are A305078.

%Y Maximum connected divisor is A327076.

%Y BII-numbers of connected set-systems are A326749.

%Y The smallest BII-number of a connected set-system is A329625.

%Y The case of strict edges is A329552.

%Y The smallest MM-number of a set of n nonempty sets is A329557(n).

%Y Cf. A056239, A112798, A302494, A305079, A329554, A329555, A329556, A329558.

%Y Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

%K nonn,more

%O 0,2

%A _Gus Wiseman_, Nov 17 2019