%I #11 Jul 28 2021 16:44:52
%S 3618,5840,7716,17502,19460,22398,23520,26852,33824,41202,45848,47328,
%T 62138,72950,82722,101084,118062,127160,128784,134012,136380,148940,
%U 165240,173658,175220,175310,177516,187556,193692,203310,230802,234032,279102,281754,285518,289970,295196,298652
%N Numbers m such that the sum of the first m primes as well as the sum of the squares and the sum of the cubes of the first m primes are all prime.
%H G. L. Honaker, Jr. and Chris Caldwell, <a href="https://primes.utm.edu/curios/page.php?short=3618">Prime Curios! 3618</a>
%H Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_978.htm">Puzzle 978. Improve this curio</a>, Prime Puzzles and Problems Connection.
%t Module[{nn=300000,prs,m1,m2,m3},prs=Prime[Range[nn]];m1=Accumulate[ prs];m2 = Accumulate[prs^2];m3=Accumulate[prs^3];Position[Thread[ {m1,m2,m3}],_? (Total[ Boole[ PrimeQ[#]]]==3&)]]//Flatten (* _Harvey P. Dale_, Jul 28 2021 *)
%o (PARI) s=0; t=0; u=0; n=0; forprime(p=2, 1e6, s+=p; t+=p^2; u+=p^3; n++; if(isprime(u) && isprime(t) && isprime(s), print1(n, ", ")))
%Y Cf. A013916, A098561, A124225.
%K nonn
%O 1,1
%A _Michel Marcus_, Nov 16 2019
%E Name (description) modified by _Harvey P. Dale_, Jul 28 2021