login
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
7

%I #4 Dec 27 2019 16:40:10

%S 1,1,1,2,3,3,1,9,36,90,147,171,144,87,36,9,1,730,8748,56862,257337,

%T 895941,2528172,5967108,12025098,20984508,32024268,43036029,51168267,

%U 53983503,50609772,42164064,31176036,20403009,11768247,5946156,2610171,984420,314262

%N Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.

%C Let f(x) = x^3 + 1, u(0,x) = 1, u(n,x) = f(u(n-1),x), and p(n,x) = u(n,sqrt(x)).

%C Then the sequence (p(n,0)) = (1,1,2,9,730, ... ) is a strong divisibility sequence, as implied by Dickson's record of a statement by J. J. Sylvester proved by W. S. Foster in 1889.

%D L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.

%e Rows 0..3:

%e 1;

%e 1, 1;

%e 2, 3, 3, 1;

%e 9, 36, 90, 147, 171, 144, 87, 36, 9, 1.

%e Rows 0..3, the polynomials u(n,x):

%e 1;

%e 1 + x^3;

%e 2 + 3 x^3 + 3 x^6 + x^9;

%e 9 + 36 x^3 + 90 x^6 + 147 x^9 + 171 x^12 + 144 x^15 + 87 x^18 + 36 x^21 + 9 x^24 + x^27.

%t f[x_] := x^3 + 1; u[0, x_] := 1;

%t u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]

%t Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329430 polynomials u(n,x) *)

%t Table[CoefficientList[u[n, x^(1/3), x], {n, 0, 5}] (* A329430 array *)

%Y Cf. A329429, A329431, A329432, A329433.

%K nonn,tabf

%O 0,4

%A _Clark Kimberling_, Nov 23 2019