OFFSET
0,1
COMMENTS
The conditions that (a(n)) and (b(n)) be increasing and complementary force the equation a(n) = 4 b(n+1) - b(n), with initial value b(0) = 1, to have a unique solution; that is, a pair of complementary sequences (a(n)) = (7,10,13,16,19,26,28,...) and (b(n)) = (1,2,3,4,6,8,9,11,12,14,...). For n = 1..30000, a(n) - 4 n ranges between -12 and 15; conjecture: {a(n) - 4 n} is unbounded below and above.
EXAMPLE
b(1) >= 2; a(0) = 4*b(1) - 1 > b(1); b(1) = 2, a(0) = 7; b(2) >= 3; a(1) = 4*b(2) - 2 > b(2); b(2) = 3, a(1) = 10; etc. [edited by Georg Fischer, Sep 23 2020]
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
b = {1}; a = {}; h = 4;
Do[AppendTo[b, mex[Flatten[{a, b}], b[[-1]]]];
AppendTo[a, h b[[-1]] - b[[-2]]], {250}]; a
(* Peter J. C. Moses, Sep 07 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 23 2019
STATUS
approved