login
G.f.: (1 + x) * (1 + x^2) * (1 + x^3) * Product_{k>=1} (1 + x^k).
1

%I #53 Jun 11 2020 10:04:02

%S 1,2,3,6,8,11,16,20,26,34,43,54,68,84,103,127,154,186,225,269,321,383,

%T 453,535,631,740,866,1012,1178,1368,1587,1835,2117,2440,2804,3217,

%U 3687,4215,4812,5487,6244,7096,8055,9128,10331,11681,13187,14870,16752,18846,21180

%N G.f.: (1 + x) * (1 + x^2) * (1 + x^3) * Product_{k>=1} (1 + x^k).

%C Number of partitions of n into distinct parts if there are two types of 1's, two types of 2's and two types of 3's.

%F a(n) = A036469(n) + A036469(n-3) - A036469(n-4) - A036469(n-7).

%F a(n) ~ 2*exp(Pi*sqrt(n/3)) / (3^(1/4)*n^(3/4)). - _Vaclav Kotesovec_, Jun 11 2020

%t nmax = 50; CoefficientList[Series[(1 + x) (1 + x^2) (1 + x^3) Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%t a[0] = 1; a[n_] := a[n] = (1/n) Sum[Sum[(-1)^(k/d + 1) If[d < 4, 2, 1] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 50}]

%Y Cf. A000009, A000098, A022567, A036469, A052816, A329289.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Jun 07 2020