login
A329373
Dirichlet convolution of the identity function with A322993.
5
0, 1, 1, 5, 1, 10, 1, 17, 6, 16, 1, 40, 1, 26, 13, 49, 1, 49, 1, 66, 19, 46, 1, 124, 8, 80, 25, 108, 1, 114, 1, 129, 31, 148, 17, 185, 1, 278, 49, 206, 1, 182, 1, 192, 65, 538, 1, 340, 10, 111, 85, 330, 1, 190, 25, 336, 151, 1056, 1, 428, 1, 2082, 97, 321, 35, 318, 1, 606, 283, 258, 1, 557, 1, 4136, 87, 1128, 23, 530, 1, 566, 90, 8236, 1, 684, 55, 16430
OFFSET
1,4
COMMENTS
Equally, Dirichlet convolution of sigma (A000203) with A322994 (Möbius transform of A322993).
FORMULA
a(n) = Sum_{d|n} d * A322993(n/d).
a(n) = Sum_{d|n} A000203(n/d) * A322994(d).
PROG
(PARI)
A000265(n) = (n/2^valuation(n, 2));
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
A322993(n) = if(1==n, 0, A000265(A156552(n)));
A329373(n) = sumdiv(n, d, (n/d)*A322993(d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2019
STATUS
approved