%I #11 Dec 28 2019 14:19:39
%S 0,1,3,6,12,25,50,101,203,406,813,1627,3254,6508,13017,26034,52068,
%T 104137,208275,416550,833101,1666202,3332404,6664809,13329618,
%U 26659237,53318475,106636950,213273900,426547801,853095602,1706191204,3412382409,6824764818
%N The binary expansion of a(n) is the second through n-th terms of A000002 - 1.
%e a(11) = 813 has binary expansion q = {1, 1, 0, 0, 1, 0, 1, 1, 0, 1}, and q + 1 is {2, 2, 1, 1, 2, 1, 2, 2, 1, 2}, which is the second through 11th terms of A000002.
%t kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
%t kol[n_Integer]:=If[n==0,{},Nest[kolagrow,{1},n-1]];
%t Table[FromDigits[kol[n]-1,2],{n,30}]
%Y Replacing "A000002 - 1" with "2 - A000002" gives A329356.
%Y Partial sums of A000002 are A054353.
%Y Initial subsequences of A000002 are A329360.
%Y Cf. A211100, A275692, A288605, A296658, A329315, A329316, A329317, A329327, A329361, A329362.
%K nonn
%O 1,3
%A _Gus Wiseman_, Nov 12 2019