login
A329226
Numbers m that divide 6^(m + 1) + 1.
1
1, 37, 16987849, 2416266949, 5995229029, 7193673829, 11465419549, 17783484529, 72155530501, 142013229529, 174523785589, 189282539137, 294183810997, 302690164297, 354613312129, 774557575609, 933821938789, 1407294504937, 1974020768389, 2112969494569, 2878251281401
OFFSET
1,2
COMMENTS
Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.
Terms cannot be a multiple of the following primes below 100: 2, 3, 5, 7, 11, 19, 23, 29, 31, 43, 47, 53, 59, 67, 71, 79, 83. - Giovanni Resta, Nov 09 2019
PROG
(Magma) [n + 1: n in [0..20000000] | Modexp(6, n + 2, n + 1) eq n];
(PARI) isok(m) = Mod(6, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019
CROSSREFS
Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), A329222 (k=5).
Sequence in context: A087020 A238840 A345467 * A171407 A023930 A022072
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(5)-a(21) from Giovanni Resta, Nov 09 2019
STATUS
approved