login
A329222
Numbers m that divide 5^(m + 1) + 1.
1
1, 2, 6, 13, 14, 174, 854, 2694, 78126, 103973, 106694, 121974, 420209, 487374, 1299374, 2174654, 3895094, 4151454, 5842214, 5951129, 6508334, 10637054, 20117894, 24482957, 31999694, 32282053, 32620202, 32872454, 34258454, 52657397, 56114618, 57679082, 65538437, 70782774, 71899526
OFFSET
1,2
COMMENTS
Conjecture: For k > 1, k^(m + 1) == -1 (mod m) has an infinite number of positive solutions.
MATHEMATICA
Select[Range[719*10^5], PowerMod[5, #+1, #]==#-1&] (* Harvey P. Dale, Jul 03 2020 *)
PROG
(Magma) [n + 1: n in [0..2000000] | Modexp(5, n + 2, n + 1) eq n];
(PARI) isok(m) = Mod(5, m)^(m+1) == -1; \\ Jinyuan Wang, Nov 16 2019
CROSSREFS
Cf. A055685.
Solutions to k^(m + 1) == -1 (mod m): A296369 (k=2), A328230 (k=3), A329168 (k=4), this sequence (k=5), A329226 (k=6).
Sequence in context: A130533 A231384 A082722 * A030416 A353588 A353971
KEYWORD
nonn
AUTHOR
STATUS
approved