This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329155 Expansion of Product_{k>=1} 1 / (1 - 2*x^k - 3*x^(2*k))^(1/2). 0
 1, 1, 4, 9, 27, 67, 193, 515, 1462, 4070, 11588, 32898, 94389, 271017, 782401, 2263002, 6565987, 19086043, 55597255, 162207806, 473992799, 1386875848, 4062919108, 11915397853, 34979609583, 102781548770, 302259362326, 889566748760, 2619915414564, 7721166976185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f.: Product_{k>=1} ((1 - x^(2*k - 1)) / (1 - 3*x^k))^(1/2). G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (3^d + (-1)^d) / d ) * x^k / 2). G.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = g.f. of A002426 (central trinomial coefficients). a(n) ~ c * 3^(n + 1/2) / (2*sqrt(Pi*n)), where c = sqrt(Product_{k>=2} 1/((1 - 1/3^(k-1))*(1 + 1/3^k))) = sqrt(8 / (3 * QPochhammer[-1, 1/3] * QPochhammer[1/3])) = 1.23332761652608605487734981242239445... - Vaclav Kotesovec, Nov 07 2019 MATHEMATICA nmax = 29; CoefficientList[Series[Product[1/(1 - 2 x^k - 3 x^(2 k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 29; CoefficientList[Series[Exp[Sum[Sum[(3^d + (-1)^d)/d, {d, Divisors[k]}] x^k/2, {k, 1, nmax}]], {x, 0, nmax}], x] CROSSREFS Cf. A002426, A067855, A081362, A242587. Sequence in context: A214418 A164342 A034527 * A111962 A307528 A198095 Adjacent sequences:  A329146 A329147 A329148 * A329156 A329157 A329158 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 21:00 EST 2019. Contains 329937 sequences. (Running on oeis4.)