OFFSET
0,1
FORMULA
Equals Sum_{k>=1} (-1)^k / k! * k-th derivative of zeta(2*k). - Vaclav Kotesovec, Jun 18 2023
EXAMPLE
0.971499034283308757222625062314754580022...
MATHEMATICA
digits = 120; d = 1; j = 2; s = Pi^2 * (2*Log[Glaisher] - Log[2*Pi]/6 - EulerGamma/6); While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][2*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
PROG
(PARI) sumpos(k=1, k^(1/k^2) - 1) \\ Michel Marcus, Nov 05 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Daniel Hoyt, Nov 05 2019
STATUS
approved